Ansatz for the two species ASEP with different hopping rates

نویسنده

  • Luigi Cantini
چکیده

An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved and the Nested Algebraic Bethe Ansatz is used to derive the Bethe Equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans [10]. We present also formulas for the total velocity of particles of a given type and their limit for large size of the system and finite densities of the particles. Université Paris-Sud, LPTMS, UMR8626, Bât. 100, Université Paris-Sud 91405 Orsay cedex. CNRS, LPTMS, UMR8626, Bât. 100, Université Paris-Sud 91405 Orsay cedex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Asymmetric Simple Exclusion Process : An Integrable Model for Non-Equilibrium Statistical Mechanics

The Asymmetric Simple Exclusion Process (ASEP) plays the role of a paradigm in NonEquilibrium Statistical Mechanics. We review exact results for the ASEP obtained by Bethe Ansatz and put emphasis on the algebraic properties of this model. The Bethe equations for the eigenvalues of the Markov Matrix of the ASEP are derived from the algebraic Bethe Ansatz. Using these equations we explain how to ...

متن کامل

Bethe Ansatz solution of the stochastic process with nonuniform stationary state

The eigenfunctions and eigenvalues of the master-equation for zero range process on a ring are found exactly via the Bethe ansatz. The rates of particle exit from a site providing the Bethe ansatz applicability are shown to be expressed in terms of single parameter. Continuous variation of this parameter leads to the transition of driving diffusive system from positive to negative driving throu...

متن کامل

Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates

Using the Bethe ansatz we obtain in a determinant form the exact solution of the master equation for the conditional probabilities of the totally asymmetric exclusion process with particle-dependent hopping rates on Z. From this we derive a determinant expression for the timeintegrated current for a step-function initial state.

متن کامل

Integral Formulas for the Asymmetric Simple Exclusion Process

In this paper we obtain general integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice Z with nearest neighbor hopping rates p to the right and q = 1−p to the left. For the most part we consider an N -particle system but for certain of these formulas we can take the N → ∞ limit. First we obtain, for the N -particle system, a formula for the ...

متن کامل

Derivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz

We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional periodic lattice. In this Matrix Product Ansatz, the components of the eigenvectors of the ASEP Markov matrix can be expressed as traces of products of non-commuting operators. We derive the relations between the operators involved and show that they ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008